Wave excitation force forecasting using neural networks
نویسندگان
چکیده
Many wave energy conversion applications require future knowledge or forecasting of the excitation force values. Most converter (WEC) control strategies need to forecast time-series for harvesting maximization. The main aim this study is experiences by a two-body heaving point absorber WEC (as case study) using three neural network methods. calculated based on hydrodynamic characteristics considered device in frequency and time-domain simulations. nonlinear autoregressive (NAR) network, group method data handling (GMDH) Long Short-Term Memory (LSTM) are fitted elevation values force. performance examined methods evaluated various irregular incident waves that created different spectrums. Moreover, sensitivity analyses sampling period algorithms input parameters performed investigate accuracy generalizability discussed at conditions. Each set divided into training test sets. results show all satisfactory sets short-term ahead forecasting, but NAR provides relatively better agreement with target compared other
منابع مشابه
Real time wave forecasting using neural networks
Forecasting of ocean wave heights, with warning time of a few hours or days, is necessary in planning many operation-related activities in the ocean. Such information is currently derived by numerically solving the differential equation representing wave energy balance. The solution procedure involved is extremely complex and calls for very large amounts of meteorological and oceanographic data...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملForecasting Sales Using Neural Networks
In this paper neural networks trained with the back propa gation algorithm are applied to predict the future values of time series that consist of the weekly demand on items in a supermarket The in u encing indicators of prices advertising campaigns and holidays are taken into consideration The design and implementation of a neural network forecasting system is described that has been installed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy
سال: 2022
ISSN: ['1873-6785', '0360-5442']
DOI: https://doi.org/10.1016/j.energy.2022.123322